The Role of Social Relations in Health Promotion

LISA F. BERKMAN, PhD

In considering new paradigms for the prevention and treatment of disease and disability, we need to incorporate ways to promote social support and develop family and community strengths and abilities into our interventions. There is now a substantial body of evidence that indicates that the extent to which social relationships are strong and supportive is related to the health of individuals who live within such social contexts. A review of population-based research on mortality risk over the last 20 years indicates that people who are isolated are at increased mortality risk from a number of causes. More recent studies indicate that social support is particularly related to survival postmyocardial infarction. The pathways that lead from such socioeconomic exposures to poor health outcomes are likely to be multiple and include behavioral mechanisms and more direct physiologic pathways related to neuroendocrine or immunologic function. For social support to be health promoting, it must provide both a sense of belonging and intimacy and must help people to be more competent and self-efficacious. Acknowledging that health promotion rests on the shoulders not only of individuals but also of their families and communities means that we must commit resources over the next decade to designing, testing, and implementing interventions in this area.

Key words: Social relationships, social support, cardiovascular disease, mortality.

INTRODUCTION

As our nation confronts a health care crisis and as disease, disability, and violence become centered more and more in the poorest, most isolated, and marginal segments of our populations, it is time to consider new paradigms for the prevention and treatment of disease and disability. In considering new preventive efforts, it is important to keep in mind that individuals do not live in a vacuum, rather they are enmeshed in a social environment and in a series of social relationships. There is now a substantial body of evidence that indicates that the extent to which these relationships are strong and supportive and individuals are integrated in their communities is related to the health of the individuals who live within such social contexts.

Almost 20 years ago, epidemiologists who were interested in how social conditions might influence health status began to develop the idea that one of the most important factors that protected people from what seemed to be overwhelming insults, both natural and humanmade, was the extent to which they were socially integrated into their communities and had deep and abiding social and psychological resources (1-4).

Unlike most epidemiologic research, the hallmark of much of this work from the start was its focus, i.e., not on any specific disease but rather on the degree to which these social conditions influence what was rather loosely termed "host resistance." In other words, in contrast to a host of other conditions and exposures, including psychological stressors, that result in classes of specific psychosomatic diseases, this class of experiences seemed to make people more vulnerable to a broad range of diseases and disabilities, which ranged from pregnancy complications and infant health in the early parts of life to disability in old age (1). This idea was defended on the basis of principles articulated in the early part of this century by such scientists as Wade Hampton Frost (5), who in speaking about declining rates of tuberculosis occurring in the first half of the century wrote:

"One of the most important factors in the decline of tuberculosis has been progressively increasing human resistance due to environmental improvements such as better nutrition and relief from physical stress tending to raise what may be called nonspecific resistance" (5).

"One of the most important factors in the decline of tuberculosis has been progressively increasing human resistance due to environmental improvements such as better nutrition and relief from physical stress tending to raise what may be called nonspecific resistance" (5).

To give you an idea of the novelty of the proposition that, first, social factors might be determinants of disease and, second, they might influence a broad range of disease outcomes, I would like to recount to you a small part of an exchange that took place during my doctoral comprehensive examinations in 1975. During these tests, candidates were asked to defend dissertation plans and underlying epidemi-
logic theory. The committee came quickly to a discussion of how social networks might influence health status. I offered the opinion that social support or networks influence many disease outcomes because these social conditions influence susceptibility to disease in general. I went on to add some hypothetical pathways involving neuroendocrine regulation and potential immune responses, which in turn might influence both diseases of an infectious nature and cancer and heart disease. At that point, the senior member of this committee, a man distinguished by his identification of viruses associated with major illnesses, proclaimed, "Over the last 150 years of medical research from Pasteur, Koch onward, research has proceeded successfully along the lines of identifying one cause of one disease with the theory of disease specificity being one of the major advances in our thinking over the last century." In fact, he correctly recounted, we often name diseases after specific etiologic agents once they are identified. He went on to question whether we should ignore this vast body of evidence and return to an era in which we invoke such vague concepts as "social forces" or perhaps "fevers," "miasma," and "consumption" and that furthermore we permit such forces to rule our current models of disease causation.

With more evidence than was available 20 years ago, I would like to respond to this issue today the way I responded to it then with a "yes."

Between 1979 with the Alameda County Study and 1994, there have been eight community-based prospective studies that reveal an association between what we have now come to call "social integration" and mortality rates, usually death from all causes (6-13). Although there are substantial variations among these studies in measurement of social relationships, in types of communities under investigation, and in length of follow-up, they show remarkably consistent results. In almost all cases, those who are most socially isolated and "disconnected" are at increased risk.

In the first of these studies from Alameda County (6), men and women who lacked ties to others (in this case, based on an index assessing contacts with friends and relatives, marital status, and church and group membership) were 1.9 to 3.1 times more likely to die in a 9-year follow-up period from 1965 to 1974 than those who had many more contacts.

The relative risks associated with social isolation were not centered in one cause of death; rather, those who lacked social ties were at increased risk of dying from ischemic heart disease (IHD), cerebrovascular and circulatory disease, cancer, and a final category including respiratory, gastrointestinal, and all other causes of death. Clearly, this social condition is not associated exclusively with increased risks from, say, coronary heart disease (CHD).

Although this study opened the field to much work in this area, there were some methodologic problems with it. Perhaps the most important of which was that the Alameda County Study had no clinical assessment of health status and relied exclusively on subject's self-reports of conditions. Thus, it is open to the criticism that prevalent disease might influence the extent to which people could maintain active social relationships and this association might be the underlying reason why isolation is related to mortality risk. Although this is a viable hypothesis, a study of men and women in the North Karelia CHD Study supports the importance of this new social risk factor independently of prevalent CHD or other standard cardiovascular risk factors (9). In this study, men and women were enrolled in a study of cardiovascular diseases. Prevalent cases of CHD were excluded; traditional CHD risk factors, blood pressure, cholesterol level, and other behavioral risk factors were assessed. The percentage of subjects who died from IHD and other causes was significantly associated with the level of social connectedness, a measure similar to the one used in Alameda County. Among men, those who were disconnected were at increased risk of dying of CHD and had an increased total mortality rate. There was no association between social ties and mortality rates among women, but it is important to note that women had very low mortality rates from any cause in this study of middle-aged men and women. The low prevalence of the outcome renders interpretation of risk difficult.

Data from these two studies of what I have called first-generation studies because they often used crude or post hoc measures of social networks are illustrative of the others in Table 1. Overall, they consistently show that people who are isolated are at increased mortality risk from a number of causes. Furthermore, they have several important methodologic strengths, which give us confidence in the findings, as follows.

1. These studies are prospective cohort studies in which ascertainment of social ties is not biased by differential recall.

2. The studies are population based. They are not composed of cohorts of volunteers or small, nonrandom segments of the population.

3. The studies have remarkably few losses to follow-up. In Alameda County, less than 4% were lost to follow-up over a decade. In a more recent study of elderly men and women in the Established

L. F. BERKMAN

 ROLE OF SOCIAL RELATIONS IN HEALTH

TABLE 1. Social Network/Support Studies of All-Cause or CHD Mortality Rate

<table>
<thead>
<tr>
<th>Study</th>
<th>Outcome</th>
<th>Sample Size</th>
<th>Age Range</th>
<th>Number of Outcome Events</th>
<th>Average Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-Based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alameda County, Berkman and Syme (6)</td>
<td>All-cause mortality</td>
<td>4725</td>
<td>30-69</td>
<td>371</td>
<td>9 years</td>
</tr>
<tr>
<td>Tecumseh, Michigan, House et al. (8)</td>
<td>All-cause mortality</td>
<td>2754</td>
<td>30-69</td>
<td>259</td>
<td>9-12 years</td>
</tr>
<tr>
<td>Duke, Blazer (7)</td>
<td>All-cause mortality</td>
<td>331</td>
<td>65</td>
<td>50</td>
<td>30 months</td>
</tr>
<tr>
<td>Swedish men, Welin et al. (12)</td>
<td>All-cause mortality</td>
<td>989</td>
<td>50, 60</td>
<td>151</td>
<td>9 years</td>
</tr>
<tr>
<td>Evans County, Georgia, Schoenbach et al. (11)</td>
<td>All-cause mortality</td>
<td>2059</td>
<td>15</td>
<td>530</td>
<td>12 years</td>
</tr>
<tr>
<td>Swedish population, Orth-Gomer and Johnson (10)</td>
<td>All-cause mortality</td>
<td>17,433</td>
<td>29-74</td>
<td>841</td>
<td>6 years</td>
</tr>
<tr>
<td>North Karelia, Finland, Kaplan et al. (9)</td>
<td>All-cause mortality</td>
<td>13,301</td>
<td>39-59</td>
<td>598</td>
<td>5 years</td>
</tr>
<tr>
<td>EPESE, Seeman et al. (13)</td>
<td>All-cause mortality</td>
<td>3807</td>
<td>65+</td>
<td>892</td>
<td>5 years</td>
</tr>
<tr>
<td>East Boston</td>
<td>All-cause mortality</td>
<td>3097</td>
<td></td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td>2786</td>
<td></td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>New Haven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-HAT, Ruberman et al. (14)</td>
<td>All-cause mortality</td>
<td>2320</td>
<td>30-69</td>
<td>184</td>
<td>3 years</td>
</tr>
<tr>
<td>Swedish men, Orth-Gomer et al. (15)</td>
<td>All-cause mortality</td>
<td>150</td>
<td>40-65</td>
<td>34</td>
<td>10 years</td>
</tr>
<tr>
<td>Diltiazem Post-Infarction Trial, Case et al. (17)</td>
<td>Recurrent nonfatal MI or cardiac death</td>
<td>1234</td>
<td>25-75</td>
<td>226</td>
<td>25 months</td>
</tr>
<tr>
<td>Angiography and coronary artery disease, Williams et al. (16)</td>
<td>Cardiovascular death</td>
<td>1368</td>
<td>46-58</td>
<td>237</td>
<td>4-11 years</td>
</tr>
<tr>
<td>EPESE, Berkman et al. (18)</td>
<td>All-cause mortality</td>
<td>194</td>
<td>65+</td>
<td>76</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Number of events = actual number of outcome events in the cohort described in outcome column (e.g., deaths from all causes, CHD, or recurrent nonfatal MIs).

In the remainder of this discussion, I focus some attention on each of these issues.

STUDIES OF RECOVERY FROM MYOCARDIAL INFARCTION (MI)

Although the previously mentioned community-based studies showed social isolation or lack of social ties to be related to mortality risk, these studies did not clarify where along the spectrum of disease social factors might have their greatest impact. For instance, do they influence the mortality rate by influencing the onset or progression of clinical disease or survival after an event?

Recently, researchers have begun to address this question by examining the influence of social ties on survival in patients post-MI. In five studies, patients who lacked social support, lived alone, or had not been married had an elevated mortality risk post-MI (Table 1) (14-18). In the first of these, Ruberman et al. (14) explored 2320 male survivors of acute MI who were participants in the Beta-Blocker Heart Attack Trial. Patients who were socially isolated were more than twice as likely to die over a 3-year period than those who were less socially isolated. When this measure of social isolation was combined with a general measure of life stress, which included items related to occupational status, divorce, expo-
sure to violent events, retirement, or financial difficulty, the risks associated with high-risk psychosocial status were even greater. Those in the high-risk psychosocial categories were four to five times as likely to die as those in the lowest risk categories. This psychosocial characteristic was associated with death from all causes and sudden deaths. It made large contributions to mortality risk in both the high-arrhythmia and low-arrhythmia groups. In this study (and most of the studies in which subjects are recruited postevent), the investigators were not able to determine the temporal association between the assessment of psychosocial resources and the severity of disease. Nonetheless, it serves as a powerful model for future studies.

In a second Swedish study of 150 cardiac patients and patients with high-risk factor levels for CHD, the finding that lack of support predicts death was further confirmed (15). Patients who were socially isolated had a three times higher 10-year mortality rate than did those who were socially active and integrated. Because these patients were examined extensively for cardiological prognostic factors at study entry, it was possible to disentangle effects of psychosocial and clinical characteristics.

In a third study, Williams et al. (16) enrolled 1368 patients who were undergoing cardiac catheterization from 1974 through 1980 and found to have significant coronary artery disease. They examined survival time until cardiovascular death through 1989. Men constituted 82% of the sample. In this study, men and women who were unmarried or without a confidant were over three times as likely to die within 5 years compared with those who had a close confidant or who were married (odds ratio (OR), 3.34; confidence interval (CI), 1.8–6.2). This association was independent of other clinical prognostic indicators and sociodemographic factors, including socioeconomic status.

In another study, Case et al. (17) examined the association between marital status and recurrent major cardiac events among patients post-MI who were enrolled in the placebo arm of a clinical trial, the Multicenter Diltiazem Post-Infarction Trial. These investigators reported that living alone was an independent risk factor with a hazard ratio of 1.54 (CI, 1.04–2.29) for recurrent major cardiac event, including both nonfatal infarctions or cardiac deaths.

In a fifth study, we explored the relationship between social networks and support and mortality rate among men and women hospitalized for a MI between 1982 and 1988 who are participants in the population-based New Haven EPESE (18). Over the study period, 100 men and 94 women were hospitalized for an MI. Thirty-four per cent of women and 44% of men died in the 6-month period after MI (Figure 1).

Among both men and women, emotional support, measured prospectively, that is, before the MI was related to both early in-hospital death and later death over a 1-year period. Among those admitted to the hospital, almost 38% of those who reported no source of emotional support died in the hospital compared with 11.5% of those with two or more sources of support. The patterns remained steady throughout the follow-up period. At 6 months, the major end point of the study, 52.8% of those with no source of support had died compared with 36.0% of those with one source and 23.1% of those with two or more sources of support. These figures did not change substantially at 1 year. As Figure 1 shows, the patterns were remarkably consistent for both men and women, younger and older people, those with greater or lesser comorbidity, and those with more or less severe cardiovascular disease, as assessed by a Killip classification system. In multivariate models that control for sociodemographic factors, psychosocial factors, including living arrangements, depressive symptoms, and clinical prognostic indicators, men and women who reported no emotional support had almost three times the mortality risk compared with subjects who reported at least one source of support (OR, 2.9; 95% CI, 1.2–6.9).

The findings from these studies are strong and consistent, although the measures of support and the populations vary dramatically. Whereas they in no way preclude the possibility that these social factors influence the onset of CHD, they strongly suggest that they influence survival post-MI.

This large body of research focusing on mortality rates, and more recently case-fatality rates, specifically, is complemented by a more limited but growing body of literature on disease progression (19, 20) incidence and functional disability (21–24), especially related to CHD and cerebrovascular disease. In considering ways in which we can maximize opportunities to make substantial progress in this area over the next years, we should investigate the influence of social relationships on the full spectrum of disease development to understand where interventions will be most effective.

PATHWAYS LEADING TO DISEASE: THE SEARCH FOR A BIOLOGIC LINK

Social networks and the degree to which individuals are embedded in supportive social relationships...
ROLE OF SOCIAL RELATIONS IN HEALTH

are related to many different outcomes, probably for many different reasons. For example, social networks are related to a broad array of health behaviors that range from the likelihood that women will engage in cancer screening (25–27), dialysis (28, 29), and smoking (30) and alcohol consumption (31). They may influence health outcomes through these behavioral mechanisms or by more direct physiologic pathways. Although a thorough review of this physiologic literature is beyond the scope of this article, several recent studies are noteworthy and have provided important pieces to the puzzle of how such a fundamentally social experience could get “inside the body.” These findings suggest that there are likely to be multiple biologic pathways involved in this linkage and, furthermore, that the pathways invoked are likely to cascade and influence a number of disease outcomes. By examining these mechanisms, we can begin to understand how several basic physiologic regulatory mechanisms, themselves intertwined, might be responsive to socioenvironmental stressors (32–34). The notion of “generalized resistance” or “susceptibility to disease” need not be interpreted literally as a single mechanism or pathway but, rather, as a more general route, referring to complex physiologic systems with feedback loops and potentials to cascade and influence an even broader array of end points.

The two physiologic systems that are the focus of most recent attention are the immunological and neuroendocrine systems, with the neuroendocrine systems being closely tied to cardiovascular reactivity. There are several excellent reviews in this field (35–38), and the reader may refer to them for more extensive and detailed discussions. I take this opportunity to discuss several individual studies that in themselves, are illustrative of the excellent work done in this area.

Early work on the link between immunological parameters and social relations was often focused on the effects of severe social losses and death of the spouse. These early landmark studies supported the idea that bereavement and loss were associated with suppressed immune function, particularly cellular immunity (39, 40).

This work was followed by the study of caregivers living with chronically ill spouses (41, 42). The findings of these more recent studies are generally consistent with those focused on bereaved men and women and support the general hypothesis that immune function, especially cellular immunity and natural killer cell activity, is influenced by aspects of social relationships. However, because these losses or impending losses are so severe and involve so many other physical and economic stresses and psychological threats, it is hard to interpret these

Fig. 1. Percentage of patients with MIs who died within 6 months by level of social support. Adjustments were made for age (top left), gender (top right), severity of MI, as defined by Killip class (bottom left), and comorbidity (bottom right). (From Berkman et al. (18) with permission.)

associations as specifically linking social support to changes in immune function. Only examination of specific findings within these studies gives stronger support for the direct importance of the influence of social relationships per se. For instance, in the study by Kiecolt-Glaser et al. (42) on family caregivers of patients with Alzheimer's disease (AD), it was reported that caregivers whose relatives were institutionalized did not differ significantly in most health behavioral or psychological parameters from those who lived with patients with AD. These data suggest that it was the emotional loss of the spouse or parent that was more critical to changes in immune function rather than the physical stresses associated with providing ongoing care to the patient with AD. Moritz et al. (43) reported similar findings with regard to depression among elderly couples in which one spouse is cognitively impaired.

Finally, other studies in which investigators examined a) the quality of marital relationships and loneliness (44–47) in less than tragic circumstances in humans and b) affiliation in nonhuman primates (48, 49) consistently point out the importance of the quality of social relationships in influencing cellular immune response.

The work in the area of neuroendocrine function and social relations is small, although there is a much larger body of work on social factors and cardiovascular reactivity and physiological arousal, which is closely linked to neuroendocrine function (50). Animal studies consistently show that how animals are grouped and the degree to which they are isolated from mothers or any animal or touched influences neuroendocrine function, cardiovascular reactivity, lipid metabolism, and the development of atherogenesis (51–56). In humans, much less is known specifically on the association between support and neuroendocrine function or reactivity, although several studies (57–59) have illustrated that touching reduces cardiovascular reactivity. Seeman et al. (60) have just completed an analysis of neuroendocrine functioning and social relationships among older high-functioning men and women. In this study, social relationships, especially the quality of emotional support, was related to urinary levels of epinephrine, norepinephrine, and cortisol among older men and women independent of other behaviors or levels of comorbidity. Emotional support was more strongly and consistently associated with these neuroendocrine parameters than were measures of social ties (e.g., integration), instrumental support, or negative aspects of social relationships. This is one of the only studies to test the hypothesis that social support is directly associated with neuroendocrine function.

In regard to cardiovascular reactivity, Kamarck et al. (61) completed a recent well-designed experimental study that builds on much of the earlier work on the effects of touching or companionship on blood pressure and cardiovascular function (62). In their study, subjects completed two laboratory tasks. One-half of the subjects worked alone. The other half had a friend accompany them. Subjects who had a supportive partner in the room during tasks showed significantly reduced heart rate activity and tended to have lower systolic and diastolic blood pressures. In addition, there was an interesting interaction between Type A behavior and social support, whereby support was associated with attenuated systolic blood pressure only for those individuals classified as being Type A. Among the potential mechanisms that might explain the association between having a supportive partner and decreased cardiovascular arousal, the authors suggest that the “friend’s presence may have acted as a conditioned stimulus or a ‘safety signal,’ altering neural input to the heart during challenge” (p. 54).

The evidence linking social relationships and support to health outcomes by way of physiologic responses that involve neuroendocrine regulation and immunological function is plausible, yet progress in this area remains a major challenge, necessitating serious interdisciplinary collaboration and great sensitivity to measurement of both psychosocial and physiologic conditions.

A CALL FOR THE DEVELOPMENT OF PSYCHOSOCIAL INTERVENTIONS

Although research based on observational studies will undoubtedly continue to yield productive insights into the role that social conditions play as etiologic factors and in the prognosis of disease, it now seems clear that we should take the next step forward to develop psychosocial interventions whereby we might attempt to alter or modify social networks and support to improve health outcomes. The development of such interventions is critical from both a scientific and a public health standpoint. From a scientific perspective, clinical trials and experimental work have important methodologic strengths that complement observational studies. Clinical trials allow us to test the principle that, by modifying exposure to risk, we change the disease outcome. Also, randomization provides us with confidence (although not assurance)
that both measured and unmeasured covariates are equally distributed in the intervention and control groups. From a public health perspective, if we are unable to translate scientific discoveries into practices that will improve the health and well-being of the public, we have failed in our most fundamental mission.

There are several key theories that have guided our group at Yale in the development of interventions. A social network or support intervention is based on the premise that the individual who is ill or at risk and his or her network represent an interdependent and dynamic system. Thus, improvement or even maintenance of health in one individual is influenced not only by the individual's behavior but also by the behaviors of others in the network and their abilities to communicate optimally. These types of interventions build on social support group and family therapy theories in which the family or network is seen in its entirety as a functioning unit (63-67).

Social learning theory also provides a useful model for understanding the acquisition of specific behaviors within social support interventions (68). A central tenet in this theory is the role of self-efficacy or the belief that one can successfully perform behaviors to produce a desired outcome. Self-efficacy is believed to be shaped by past and present behavior and by the social environment through observation of behaviors in others and verbal support and persuasion. Thus, according to this theory, for social support to be health promoting, it must provide not only a sense of belonging and intimacy, but it must also help people to be more competent and self-efficacious. Support that encourages dependence may not be health promoting (69, 70). Social learning and support group theories have been used successfully in the development of self-management programs aimed at minimizing the impact of chronic illness on functional capacity (71) and have been designed to help people manage a chronic condition (72-76). Many programs aimed at altering specific behaviors have used support groups of patients to induce behavioral and psychological changes (73, 77, 78). Finally, some programs have specifically been aimed at providing support and/or supportive counseling to improve health outcomes in patients with MIs (79), cancer (80, 81), and stroke (82). These programs have an excellent potential to generalize to other areas with the use of intervention strategies that range in focus from patient support groups to individualized professional intervention with the patient and/or family. Our own bias in this regard is that interventions that aim at restructuring naturally occurring networks and resources for support will be more effective than those that rely on short-term constructed support groups. We recognize, however, that support groups often have the advantage of bringing people together with shared concerns or of providing opportunities for interaction among people who are socially isolated.

Because naturally occurring networks form the basis for long-term behaviors, we found an excellent intervention model that was developed at the Center for Family Research at George Washington University School of Medicine, which combines both natural and "constructed" supports (83). This model brings both patients and families with different chronic illnesses together in small groups for a number of structured sessions. The multifamily discussion group as envisioned by the George Washington group has three components: a) educational, b) family issues, and c) affective. The model is designed to mix families with different chronic illnesses so that biomedical aspects of any single disease do not overwhelm the discussion of general psychosocial stressors. Such a multifamily intervention also has the advantages of not isolating the "sick" patient from other family members nor of focusing all intervention efforts on a single family or network so that they find it difficult to identify their situation as common or shared with others.

Over the next years, as more interventions are developed, we will undoubtedly see variations on this theme work with equal efficacy. Similarly, as other clinical trial methodologists have come to appreciate, individually tailored, stepped-care approaches will become better defined. It will also be important to remember that large-scale macrosocial, economic, and welfare policies influence the ability of families and communities to maintain high levels of social integration and support. In this vein, larger scale interventions aimed not at individuals but at communities or work sites may also make significant contributions to strengthening social ties.

In this era of health care reform, it is important to support efforts to promote financial access to medical care for all Americans; however, we cannot expect that such access will erase social inequalities in health. To improve health among vulnerable and high-risk populations, we will need to focus on preventive efforts that, at their core, promote social support and develop family and community strengths. Acknowledging that health promotion rests on the shoulders not only of individuals but also of their families and communities means that we must commit resources over the next decade to
designing, testing, and implementing interventions in this area. This is a critical next step. For, as an African saying goes, "It takes an entire village to raise one child."

Supported in part by the National Institute of Aging grant RO1 AG11042-01A1 and Claude Pepper Older Americans Independence Centers grant 1P60 AG10469-01A1.

I acknowledge the collaboration of Tom Glass, Teresa Seeman, Carlos Mendes de Leon, and Kelly Brownell in the development of psychosocial intervention models discussed in this article.

REFERENCES

ROLE OF SOCIAL RELATIONS IN HEALTH

